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IMPROVING ROAD SAFETY: SUPERVISED MACHINE LEARNING 

ANALYSIS OF FACTORS INFLUENCING CRASH SEVERITY 
 

Summary. Road traffic crash severity is shaped by a complex interplay of human, 

vehicular, environmental, and infrastructural factors. While machine learning (ML) 

has shown promise in analyzing crash data, gaps remain in model interpretability 

and region-specific insights, particularly for the UK context. This study addresses 

these gaps by evaluating supervised ML models – Decision Tree, Support Vector 

Machine (SVM), and LightGBM – to predict crash severity using 2022 UK accident 

data. The research emphasizes interpretability through SHapley Additive 

exPlanations (SHAP) to identify critical factors influencing severity outcomes. 

Results demonstrate that LightGBM outperforms other models in predictive 

performance, with police officer attendance at the scene, speed limits, and the 

number of vehicles involved emerging as pivotal determinants of severity. The 

analysis reveals that higher speed limits and single-vehicle collisions correlate with 

severe outcomes, while police presence may mitigate accident severity. However, 

the study acknowledges limitations, including dataset constraints. By integrating 

ML with post-hoc interpretability techniques, this work advances actionable 

insights for policymakers to prioritize road safety interventions, such as optimizing 

enforcement strategies and revising speed regulations. The findings underscore the 

potential of interpretable ML frameworks to enhance understanding of crash 

dynamics and inform targeted safety measures, contributing to global efforts to 

reduce traffic-related fatalities and injuries. 
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1. INTRODUCTION 

 

The severity of road traffic crashes is influenced by a complex interplay of factors such as 

human behavior, vehicle characteristics, road conditions, and environmental factors [1]. 

Additionally, poor road design and maintenance significantly contribute to traffic accidents, 

compromising overall road safety [2]. There are various approaches to analyzing traffic 

crashes, such as historical crash data analysis, crash site analysis, safety surrogate measures, 

crash reconstruction, safety effectiveness evaluation, and crash prediction models. Among 

these, leveraging historical crash data for crash analysis, assessment, and prediction remains 

one of the most widely adopted methods. Understanding the nature of traffic crashes, 

identifying the key factors influencing their severity, and developing accurate crash prediction 

models are essential steps toward building a safer and more efficient transportation system [3]. 

Accurate crash predictions are essential for understanding the main causes of road traffic 

crashes and devising effective solutions to minimize their impact [4]. This involves analyzing 

a vast accident database covering various factors such as road users, vehicles, roadways, and 

environment [5]. Statistical and artificial intelligence models are employed to examine the 

interactions between these factors, with artificial intelligence models gaining popularity due to 

their ability to handle large datasets and identify complex interactions [6]. Machine learning, a 

data-driven approach and a branch of artificial intelligence, plays a key role in data analysis 

and decision-making, enabling computers to learn and make decisions autonomously with 

minimal human intervention [3]. 

Nowadays, machine learning has been widely applied in many fields, including road safety. 

In this field, it has been utilized for various purposes such as identifying crash-prone road 

locations [7], assessing injury severity [8], analyzing the role of road users in crashes [9], 

evaluating the role of road types in crashes [10], exploring the mechanism of crashes with 

autonomous vehicles [11], evaluating the impact of factors like alcohol consumption [12] and 

environmental conditions [13]. There are various machine learning models, including 

supervised, unsupervised, semi-supervised, and reinforced learning categories [14]. This study 

focuses specifically on supervised machine learning models, as they have shown promise in 

predicting crash severity and identifying contributing factors [15]. Accurately predicting crash 

severity aids in the timely management of traffic safety and the implementation of effective 

strategies [1]. Supervised learning is further divided into regression and classification methods 

[16].   

Classification in machine learning is a form of supervised learning where the dataset 

consists of both input features and corresponding class labels. The model is trained on this 

labeled dataset to recognize patterns and predict the class of new instances. Classification 

methods are particularly effective in handling large-scale data and serve as a key data mining 

technique for categorizing information into distinct groups while extracting meaningful 

insights. By grouping datasets with similar characteristics, classification enables the 

development of predictive models that accurately assign class labels. In essence, classification 

involves determining the most appropriate category for each data instance based on learned 

patterns [27].  

Classification methods have been widely applied in crash studies. In order to classify 

collisions into three categories – fatal, non-fatal, and Property Damage Only (PDO) – the study 



Improving road safety…  131. 

 

[15] used Deep Neural Networks (DNN) and tree-based classifiers. While the Decision Tree 

(DT) and Random Forest (RF) performed well for other categories, the results indicated that 

DNN was more accurate in predicting fatal crashes.  

Similarly, in order to categorize accident severity, the study [17] compared the performance 

of five machine learning classifiers – K-Nearest Neighbor (KNN), Multilayer Perceptron, DT, 

Support Vector Machine (SVM), and Naïve Bayes – against the traditional Logistic Regression 

(LR). According to their results, the Multilayer Perceptron, KNN, and DT performed better 

than the others. Additionally, they found that two factors that significantly affect class 

prediction are traffic control and ground surface temperature. 

The study [18] observed that DT, KNN, SVM, evolutionary algorithms, and Artificial 

Neural Networks (ANN) are frequently used in safety models. The study [19] found that the 

linear regression model's goodness-of-fit and prediction accuracy were comparatively low, and 

it was insufficient in explaining the impact of most variables. Additionally, traffic management 

organizations can prevent or mitigate secondary accidents by using the back-propagation 

neural network model to forecast the time interval between primary and secondary incidents.   

In recent years, the Light Gradient Boosting Machine (LightGBM) is a cutting-edge tree-

based ensemble learning method known for its high predictive accuracy, rapid training speed, 

and efficient memory usage, making it particularly suitable for research involving large 

datasets [20]. Although previous research has extensively utilized machine learning algorithms 

for crash analysis, a significant gap remains in providing clear explanations of how these 

models work and the factors influencing their predictions. While traditional statistical models 

often rely on predefined assumptions, machine learning models offer a more flexible approach 

that does not require predetermined relationships between variables, making them more 

suitable for crash analysis. 

Despite their superior accuracy, machine learning-based classifiers face challenges in 

transparency and interpretability. In the context of road safety, where decisions can range from 

preventing minor accidents to saving lives, understanding how these models make predictions 

is crucial. By shedding light on the factors influencing the model's predictions and 

classification results, decision-making processes can be improved, and our understanding of 

road safety can be deepened. Moreover, there is a lack of comprehensive, data-driven crash 

severity analysis specifically addressing road systems in the United Kingdom (UK), which 

underscores the need for further research in this area. 

This study aims to fill this gap by investigating the effectiveness of several supervised 

machine learning models, including Decision Tree, Support Vector Machine, and LightGBM 

in predicting crash severity within the UK context. There has been no study evaluating the 

effectiveness of these three algorithms simultaneously in predicting crash severity. By 

investigating different machine learning algorithms for crash severity identification, comparing 

their results, applying post-hoc techniques to interpret machine learning models and their 

predicted classes, and highlighting the variables affecting crash severity in the UK context, this 

study introduces new components. The findings of this study will contribute to the 

improvement of road safety by providing better predictive tools and deeper insights into the 

factors that affect crash severity. 

The machine learning workflow defines the specific work steps in implementing machine 

learning. However, depending on each requirement and each project, there are different 

machine learning workflows [21]. This study is implemented, including the following six basic 

steps, as shown in Fig. 1. 

❖ Data collection: Gather data from various sources, ensuring quality and 

representativeness. 
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❖ Data preprocessing: This step involves cleaning the data, handling missing values, 

normalizing or standardizing features, and performing feature selection or 

engineering to enhance the dataset’s quality. Proper preprocessing ensures that the 

machine learning model receives meaningful and well-structured input. 

❖ Training the model:  

➢ Once the data is preprocessed, a machine learning model is selected and trained 

using historical data. 

➢ The model learns patterns from the data through optimization techniques. 

➢ The choice of algorithm depends on the problem type (classification, regression, 

clustering, etc.) and dataset characteristics. 

❖ Evaluating model: 

➢ After training, the model’s performance is assessed using validation techniques 

such as cross-validation, accuracy scores, precision-recall analysis, or other 

evaluation metrics. 

➢ If the model does not meet the desired performance criteria, further improvements 

are required. This is a crucial step to ensure the model generalizes well to unseen 

data. 

❖ Improving model (if needed): 

➢ If the evaluation results indicate poor performance, model optimization techniques 

are applied. 

➢ This may include adjusting hyperparameters, using more advanced algorithms, 

gathering more training data, or feature engineering. 

➢ The cycle of training, evaluation, and improvement continues iteratively until a 

satisfactory performance is achieved. 

❖ Using Model: 

➢ Once the model achieves acceptable accuracy and reliability, it is deployed for 

real-world applications. 

➢ The model is integrated into a system where it makes predictions on new data and 

provides insights or automated decisions. 

➢ Continuous monitoring and updating may be required to maintain model 

effectiveness over time. 

 

 
 

Fig. 1. Machine learning workflow 

 

The remainders of the paper are arranged as follows. Section 2 presents study area and data. 

Section 3 presents research methods. Section 4 illustrates results and discussions. In Section 5, 

conclusions are presented. 
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2. RESEARCH AREA AND DATA COLLECTION 

 

2.1. Research Area 

 

The total area of the United Kingdom is 244,376 square kilometers, with an estimated 

population of nearly 67.6 million people in 2022. The road infrastructure spans approximately 

422,100 kilometers of paved roads, with 396,700 kilometers located in Great Britain 

(comprising England, Scotland, and Wales) and an additional 25,500 kilometers in Northern 

Ireland. Great Britain had 40.8 million licensed automobiles in total in 2022. The main means 

of transport in the UK include cars, buses, coaches, vans, taxis, motorcycles, pedal cycles, and 

other vehicles. Vehicles are driven on the left in the UK, and drivers are legally required to stay 

in the left lane on multilane carriageways unless overtaking or turning right. Speed limits in 

the UK range from 20 mph (32 km/h) to 70 mph (113 km/h). 

In the UK, road systems are grouped into five categories, including: Motorways; A roads: 

Major transport links within or between areas; B roads: Connect different areas and link A 

roads to smaller roads; Classified unnumbered roads (C roads): Smaller roads linking 

unclassified roads to A and B roads; Unclassified roads: Local roads for local traffic, making 

up 60% of the UK's road network. 

 

2.2. Data Collection 

 

This study utilizes a dataset from data.gov.uk, which includes records of road traffic 

accidents reported by the UK’s Department for Transport in 2022 [22]. The original dataset 

comprises 106,004 records, including the target variable accident_severity and several 

independent variables related to accident_reference, road conditions, environmental factors, 

and vehicle involvement. Key features considered in the dataset include number_of_vehicles, 

number_of_casualties, day_of_week, first_road_class, first_road_number, road_type, 

speed_limit, junction_detail, junction_control, light_conditions, weather_conditions, 

road_surface_conditions (RSC), did_police_officer_attend_scene_of_accident (PASA), 

trunk_road_flag, urban_or_rural_area, and special_conditions_at_site (SCAS). Descriptive 

statistics for these independent variables are presented in Tab. 1. 

 

Tab. 1 

Descriptive statistics of the independent variables 

 

               Statistics 

 

Variables 

Mean 

 

Standard 

deviation 

Standard 

error 

 

Minimum Maximum 

Number_of_vehicles 1.825 0.688 0.002 1.000 16.00 

Number_of_casualties 1.278 0.699 0.002 1.000 16.00 

Day_of_week 4.169 1.940 0.005 1.000 7.000 

First_road_class 4.222 1.465 1.000 6.000 0.004 

First_road_number 784.8 1576 4.841 0.000 9176 

Road_type 5.252 1.704 0.005 1.000 9.000 

Speed_limit 35.96 14.21 0.043 20.00 70.00 

Junction_detail 4.016 12.83 0.039 0.000 99.00 

Junction_control 1.714 2.502 0.007 -1.00 9.000 

Light_conditions 2.010 1.689 0.005 -1.00 7.000 

https://data.gov.uk/


134 K.G. Le 

 

Weather_conditions 1.636 1.851 0.005 1.000 9.000 

RSC 1.346 0.972 0.002 -1.00 9.000 

SCAS 0.242 1.345 0.004 -1.00 9.000 

Urban_or_rural_area 1.323 0.468 0.001 1.000 3.000 

PASA 1.481 0.766 0.002 1.000 3.000 

Trunk_road_flag 1.725 0.787 0.002 -1.00 2.000 

 

 

3. METHODS  

 

Figure 2 illustrates the process of training the model in this study. This process has three 

main steps, including 3 steps. 

 

 
 

Fig. 2. The process of training model 

 

Step 1: Machine learning preprocessing pipeline 

Before model training, data must be preprocessed to ensure its quality and suitability for 

machine learning algorithms. This process includes several key stages: 

- Handling missing data: Records with incomplete data are either removed or imputed using 

the mean, median, or mode of the respective feature [28]. 

- Categorical data encoding: Categorical variables are converted into numerical representations 

using either Label Encoding or One-Hot Encoding [29]. 

- Target variable selection: Identifying the dependent variable for classification. 

- Train/Test split: The dataset is divided into training (80%) and testing (20%) sets using 10-

fold cross-validation to ensure robustness in evaluation [30]. 

- Feature set generation: Selection of the most relevant attributes from the dataset.  

 

Step 2: Model selection and training 

After preprocessing, selecting the appropriate algorithm is crucial. The choice of algorithm 

depends on the problem type and the characteristics of the dataset. The following steps are 

followed: 

- Algorithm selection: Various classification algorithms, such as Decision Trees, Random 

Forest, and Support Vector Machines (SVM), are selected. 
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- Hyperparameter tuning & Model fitting: Optimization of model parameters using grid search 

and cross-validation to enhance prediction accuracy and prevent overfitting [30]. 

 

Step 3: Model evaluation 

The trained models are evaluated on the test dataset using multiple performance metrics, 

including [31]: 

- Accuracy: Measures the proportion of correctly classified instances. 

- Precision, recall, and F1-score: Evaluate the model’s ability to correctly predict each accident 

severity class. 

- Confusion matrix: Used to analyze misclassification rates across different severity levels. 

 

3.1. Data Pre-Processing 

 

In this stage, it's necessary to remove missing data, eliminate irrelevant attributes, label all 

data, encode features, and subsequently extract features, reducing the dataset while ensuring 

the quality of the dataset.  

❖ Removing unnecessary features: Unnecessary features, such as accident_index and 

accident_reference, are removed to reduce redundancy and improve model efficiency 

because they have no impact on the prediction results of the traffic accident severity model. 

❖ Handling missing data: The collected dataset does not contain any missing values. 

❖ Categorical encoding: Each attribute was categorized as either categorical or numerical, 

depending on its inherent nature. In this dataset, categorical data has been encoded into 

numerical form to facilitate analysis using supervised machine learning algorithms, shown 

in Tab. 2. Typically, accident severity is divided into three classes and coded as follows: 1 

for fatal; 2 for serious; and 3 for slight. Fig. 3 illustrates the distribution of accident severity.  

❖ Target variable selection: accident_severity is the target variable for classification.  

❖ Feature set generation: Selection of the most important features from the dataset.  

 

 

 
Fig. 3. Distribution of accident severity 
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Tab. 2 

Describe accident features and encode categorical variables 

 

Variables Description Encoded variables 

Accident_severity The severity level 

of the accident 

1=Fatal, 2=Serious, 3=Slight 

Day_of_week The day of the 

week the accident 

occurred 

1=Sunday, 2=Monday, 3=Tuesday, 

4=Wednesday, 5=Thursday, 6=Friday, 

7=Saturday 

First_road_class The type of road 

where the accident 

occurred 

1=Motorway, 2=A (major) road, 3=A 

(minor) road, 4=B road, 5=C road 

Number_of_vehicles The number of 

vehicles involved 

in the accident 

Numerical data 

Number_of_casualties The number of 

injured or 

deceased 

individuals 

Numerical data 

First_road_number The road number 

where the accident 

occurred 

Numerical data 

Road_type The road layout 1=Roundabout, 2=One way street, 

3=Dual carriageway, 6=Single 

carriageway, 7=Slip road, 12=One 

way street 

Speed_limit The speed limit 20, 30, 40, 50, 60, 70 are the only 

valid speed limits on public highways 

Junction_detail The type of 

junction where the 

accident occurred 

1=Roundabout, 2=Mini-roundabout, 

3=T or staggered junction, 5=Slip 

road, 6=Crossroads, 7=More than 4 

arms (not roundabout), 8=Private 

drive or entrance 

Junction_control The traffic control 

at the junction 

1=Authorized person, 2=Auto traffic 

signal, 3=Stop sign, 4=Give way or 

uncontrolled 

Light_conditions The lighting 

conditions at the 

time of the 

accident 

1=Daylight, 4=Darkness - lights lit, 

5=Darkness - lights unlit, 6=Darkness 

- no lighting, 7=Darkness – lighting 

unknown 

Weather_conditions The weather 

conditions at the 

time of the 

accident 

1=Fine no high winds, 2=Raining no 

high winds, 3=Snowing no high 

winds, 4=Fine + high winds, 

5=Raining + high winds, 6=Snowing 

+ high winds, 7=Fog or mist 

Road_surface_conditions The condition of 

the road surface 

1=Dry, 2=Wet or damp, 3=Snow, 

4=Frost or ice, 5=Flood over 3cm 

deep, 6=Oil or diesel, 7=Mud 
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Special_conditions_at_site Special conditions 

at the accident 

scene 

0=None, 1=Auto traffic signal-out, 

2=Auto signal part defective, 3=Road 

sign, 4=Roadworks, 5=Road surface 

defective, 6=Oil or diesel, 7=Mud 

Trunk_road_flag Whether the 

accident occurred 

on a trunk road 

1=Trunk (Roads managed by 

Highways England), 2=Non-trunk  

Urban_or_rural_area The area where the 

accident occurred 

1=Urban, 2=Rural  

Did_police_officer_attend

_scene_of_accident 

Whether a police 

officer attended 

the scene 

1=No, 2=Yes 

 

Handling numerous features can significantly impact model performance due to the 

exponential increase in training time and the heightened risk of overfitting. Consequently, 

certain redundant or unnecessary features were eliminated to streamline the model and improve 

its functionality [23]. After preprocessing the data, it is necessary to select the most important 

features for training the model [24]. 

The Random Forest algorithm was utilized to identify the most influential features based on 

their correlation with accident severity. This process ensures that only the most relevant 

attributes are retained for model training. Random Forest, an ensemble learning method, 

constructs multiple decision trees and aggregates predictions. The following steps were used 

to identify key features for accident severity prediction [25]: 

Step 1: Random Forest fundamentals: Build an ensemble of decision trees to predict 

accident severity. A Random Forest consists of M decision trees. Each tree m is trained as 

follows: 

[1]  Bootstrap sampling: 

- Randomly select N samples with replacement from the training set (N: total samples). 

- This creates a subset 𝐷𝑚 for tree m. 

[2]  Random feature selection: 

- At each node, select d features randomly from D total features (d ≤ D). 

- Typical choices: 𝑑 = √𝐷 (classification). 

[3]  Tree construction: 

- Split nodes using Gini impurity (for classification). 

- Stop when reaching maximum depth or minimum samples per node. 

[4]  Aggregation of predictions: 

- Classification: Majority voting across all trees. 

- The formula used for classification in a Random Forest is: 

 

         𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∑ 1(𝑀
𝑚−1 𝑓𝑚(𝑥) = 𝑐)         (1) 

 

Where: 

𝑦̂ is the final predicted class label for input x. 

𝑐 is one of the possible classification labels. 

𝑎𝑟𝑔𝑚𝑎𝑥𝑐 is the operator that finds the value of 𝑐 (the classification label) with the highest total 

votes. In other words, this is the label most frequently predicted by the trees in the forest. 

m is the index of the decision tree in the forest, ranging from 1 to M. 

M is the total number of trees in the Random Forest. 
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𝑓𝑚(𝑥) is the prediction function of tree m for input x.  

1(𝑓𝑚(𝑥) = 𝑐) is the indicator function, which has the following values: 

• 1, if tree m predicts that x belongs to class c; 

• 0, otherwise.  

 

The sum ∑ 1(𝑀
𝑚−1 𝑓𝑚(𝑥) = 𝑐) counts the number of trees in the forest that predict x belongs 

to class c. 

 

Step 2: Feature importance calculation 

[1] Gini importance 

(a) Gini impurity at node t: 

 

   𝐺(𝑡) = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1            (2) 

 

Where: 

C: Number of classes (e.g., fatal, serious, minor).  

𝑝𝑖: Proportion of samples in class i at node t.  

 

(b) Gini reduction for feature 𝑥𝑗  at node t: 

 

          ∆𝐺(𝑥𝑗 , 𝑡) = 𝐺(𝑡) − (
𝑁𝑙𝑒𝑓𝑡 

𝑁
𝐺(𝑡𝑙𝑒𝑓𝑡) +

𝑁𝑟𝑖𝑔ℎ𝑡 

𝑁
𝐺(𝑡𝑟𝑖𝑔ℎ𝑡))       (3) 

 

Where: 

𝑁𝑙𝑒𝑓𝑡, 𝑁𝑟𝑖𝑔ℎ𝑡: Number of samples in left/right child nodes.  

N: Number of samples at parent node t. 

 

(c) Total Gini importance for feature 𝑥𝑗: 

 

                                       𝐺𝐼(𝑥𝑗) =
1

𝑀
∑ ∑ ∆𝐺(𝑥𝑗 , 𝑡)𝑡∈𝑇𝑚

𝑀
𝑚=1                     (4) 

 

Where: 

𝑇𝑚: Set of nodes in tree m. 

 

[2] Threshold for feature selection 

(a) Sort features: Rank features by descending importance: 

 

                                                 𝐼1 ≥ 𝐼2 ≥ ⋯ ≥ 𝐼𝑛        (5) 

 

(b) Cumulative importance calculation: 

 

                                            𝐶𝑘 =
∑ 𝐼𝑖

𝑘
𝑖=1

∑ 𝐼𝑖
𝑛
𝑖=1

 , 𝑘 = 1,2, … , 𝑛            (6) 

 

(c) Threshold identification: In study [26], an 80% threshold was proposed. 

However, in my research, selecting an 80% threshold would eliminate many important 

features. Therefore, a 90% threshold was chosen as it better suits the objectives of this study. 
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Find the smallest k such that: 

 

                        𝐶𝑘 ≥ 0.9                    (7) 

 

Retain the top k features. 

 

Where: 

I: The importance score of each feature.  

𝐶𝑘: The normalized cumulative sum up to the current feature. 

 

3.2. Decision Tree 

 

A Decision Tree is a hierarchical model that classifies data by recursively splitting it into 

subsets based on feature values. Each internal node represents a decision rule, each branch 

corresponds to an attribute value, and each leaf node represents a class label. At each node, the 

algorithm selects the best feature to split the data using a criterion such as Gini Index, Entropy, 

or Information Gain. The tree continues to grow until a stopping criterion is met (e.g., max 

depth, minimum samples per node) [32]. In this study, the Classification and Regression Trees 

(CART) algorithm was applied to segment the data and construct a tree that maximizes the 

homogeneity of the dependent variable's values within the nodes [33]. 

 

❖ Impurity measure (Gini index): 

In classification problems, CART commonly uses the Gini index to evaluate the impurity of a 

node. The Gini index (G) is defined as shown in Equation (2). The Gini Index reaches its 

minimum (zero) when all samples in the node belong to a single class, indicating a pure node. 

 

❖ Gini decrease: 

To decide the best split at each node, the algorithm calculates the reduction in impurity from 

splitting the node into two child nodes. This reduction, quantified as the Gini decrease (∆G), is 

computed as shown in Equation (3). A higher ∆G indicates a more effective split in terms of 

class separation. 

 

❖ Detailed workflow for accident severity prediction: 

Step 1: Initialize the root node: Start with the entire dataset at the root node. 

Step 2: Evaluate splitting criteria for each feature 

- For every feature and possible threshold value, compute G for the potential split. 

- Calculate ∆G using the formula mentioned above.  

Step 3: Select the best split and partition the data 

- Choose the feature and threshold with the highest ∆G (greatest impurity reduction). 

- Split the dataset into two child nodes based on this decision rule. 

Step 4: Recursive splitting 

- For each child node, repeat Step 2 and Step 3.  

- Continue this process recursively until a stopping condition is met. 

- Stopping conditions: The maximum tree depth is reached; The minimum number of 

samples per leaf is reached; No further impurity reduction is possible. 

Step 5: Assign class labels to leaf nodes 

- Once no further splits are made, assign a class label to each leaf node. 

- The label is typically determined by the majority class of the samples within that leaf. 
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- For accident severity prediction, each leaf node will be labeled as fatal, serious, or slight, 

depending on which severity level is most prevalent among the samples in that node. 

 

3.3. Support Vector Machine (SVM) 

 

SVM is a classification algorithm that finds the optimal hyperplane to separate different 

classes. Fig. 4 illustrates the process of SVM. The optimal hyperplane in SVM is the one that 

maximizes the distance from both classes. SVM aims to achieve this by evaluating various 

hyperplanes that best classify the labels, and then selecting the one with the greatest margin 

from the data points [34]. 

 

❖ Hyperplane equation:  

The decision boundary in SVM is defined by a hyperplane, which can be expressed as: 

 

                                                  𝑤𝑇𝑥 + 𝑏 = 0        (8) 

 

Where: w is the weight vector; 𝑤𝑇is the transpose of the weight vector; x is the feature vector; 

b is the bias term. 

 

Data points are classified based on the sign of the value 𝑤𝑇𝑥 + 𝑏. 

 

❖ Margin and optimal hyperplane: 

The margin is the distance between the hyperplane and the nearest data points from any 

class, known as support vectors. SVM aims to maximize this margin, which can be 

mathematically formulated as: 

 

                                                         𝑀𝑎𝑟𝑔𝑖𝑛 =
2

‖𝑤‖
        (9) 

 

Where: ‖𝑤‖ is the norm of the weight vector 𝑤, representing the magnitude of this vector. 

 

Maximizing the margin is equivalent to minimizing ‖𝑤‖2. 

 

❖ Optimization problem: 

For a linearly separable case, SVM finds the optimal hyperplane by solving the following 

constrained optimization problem. The objective function is: 

 

                                                             min
𝑤,𝑏

1

2
‖𝑤‖2       (10) 

 

subject to: 

 

                                               𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1, ⩝ 𝑖                           (11) 

 

Where: 𝑦𝑖 represents the class label for the data point 𝑥𝑖, where 𝑦𝑖 is typically +1 or −1. 
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Fig. 4. The process of SVM [35] 

 

3.4. LightGBM 

 

LightGBM is an effective and efficient open-source gradient boosting framework designed 

for machine learning. It excels at handling large datasets while maintaining high performance 

in speed and memory efficiency. LightGBM utilizes gradient boosting, a technique that merges 

multiple weak learners, typically decision trees, to form a robust predictive model. One 

potential drawback of LightGBM is its sensitivity to hyperparameters. While LightGBM offers 

various hyperparameters for fine-tuning model performance, selecting the optimal values can 

be challenging and may require extensive experimentation [20]. 

 

❖ LightGBM is a gradient boosting framework that uses decision trees. For a multi-class 

classification problem (3 classes), the objective function at iteration t is defined as: 

 

                         𝐿(𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + 𝛺𝑛
𝑖=1 (𝑓𝑡)     (12) 

 

Where: 

𝑦𝑖: The actual label of sample i (fatal/serious/slight). 

𝑦̂𝑖
(𝑡−1)

: The accumulated prediction from previous trees. 

𝑓𝑡: The decision tree added at iteration t. 

Ω(𝑓𝑡): The regularization function to prevent overfitting: 

 

                                                Ω(𝑓𝑡) = 𝛾𝑇 +
1

2
λ ∑ 𝑤𝑗

2𝑇
𝑗=1      (13) 

 

Where: 

T: Number of leaves in the tree.  

𝑤𝑗: Output value at leaf j.  

𝛾, λ: Hyperparameters that control the complexity of the tree. 

 

This formulation ensures that LightGBM optimizes the model by minimizing loss while 

maintaining regularization to prevent overfitting. 

 

❖ Loss function for multi-class classification: For a 3-class classification problem, the 

Cross-Entropy Loss is used: 
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                                𝑙(𝑦𝑖, 𝑦̂𝑖) = − ∑ 𝑦𝑖,𝑐log (𝑝𝑖,𝑐)3
𝑐=1      (14) 

 

Where: 

𝑦𝑖,𝑐: Equals 1 if sample i belongs to class c, otherwise 0. 

𝑝𝑖,𝑐: The predicted probability for class c, computed as: 

 

                                𝑝𝑖,𝑐 =
exp (𝑦̂𝑖,𝑐)

∑ 𝑒𝑥𝑝 (𝑦̂𝑖,𝑘)3
𝑘=1

                                        (15) 

 

This formulation ensures that the model optimizes the predicted probabilities for multi-class 

classification. 

 

3.5. Model Evaluation 

 

The aim of constructing a predictive model is to ensure its accuracy when applied to new, 

unseen data. This is achieved through the use of statistical techniques, wherein the training 

dataset is meticulously chosen to gauge the model's efficacy on novel and unexplored data. A 

fundamental approach to validating the model involves partitioning a segment of the labeled 

data, which is reserved for assessing the model's ultimate performance. Maintaining the 

statistical integrity of the data during this split is crucial. It necessitates that both the training 

and test datasets possess similar statistical properties to the original data to prevent bias in the 

trained model. In this study, the labeled dataset was divided into an 80% training set and a 20% 

testing set. The efficacy of each model was sequentially evaluated to compare their 

performance regarding metrics such as confusion matrix, sensitivity, and specificity for 

accident severity. The model's performance was assessed using various criteria derived from 

the confusion matrix. This matrix provides a range of evaluation metrics, including accuracy, 

which represents the proportion of correct predictions and is computed as follows [36]: 

 

                                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
     (16) 

 

Where: 

TP (True Positives): The number of samples correctly predicted as the positive class. 

TN (True Negatives): The number of samples correctly predicted as the negative class. 

FP (False Positives): The number of samples incorrectly predicted as the positive class 

(actually negative). 

FN (False Negatives): The number of samples incorrectly predicted as the negative class 

(actually positive).  

 

Precision, defined as the ratio of correctly identified positive cases to the total predicted 

positive cases, is calculated as follows: 

 

                                           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP 

TP + FP 
                 (17) 

 

Recall, or sensitivity, is the ratio of correctly identified actual positive cases to the total 

actual positive cases, and it is calculated as follows: 

 

                                                    𝑅𝑒𝑐𝑎𝑙𝑙 =
TP 

TP + FN 
        (18) 
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The F1 score, which measures the balance between precision and recall, is computed as 

follows: 

 

                                             𝐹1 score =  2 x 
Recall x Precision 

Recall + Precision 
    (19) 

 

Moreover, other various evaluation metrics are utilized to assess the performance of each 

classifier model, including Cohen’s Kappa, Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE), and Root Relative 

Squared Error (RRSE). To analyze and draw conclusions, we adapt the confusion matrix, which 

compares actual results (rows of the table) with model predictions (columns of the table). This 

allows us to scrutinize each algorithm by examining the number of instances correctly or 

incorrectly predicted.  

Cohen’s Kappa is a statistical measure that evaluates the accuracy of a classification model 

by comparing the level of agreement between the model’s predictions and actual values, 

adjusting for the possibility of random agreement, is computed as follows: 

 

                                                 Cohen’s Kappa =  
𝑃0−𝑃𝑒

1− 𝑃𝑒
    (20) 

 

Where: 

𝑃0 is the observed agreement (the proportion of correctly classified instances). 

𝑃𝑒 is the expected agreement due to chance. 

Cohen’s Kappa values range from [-1, 1]:  

Cohen’s Kappa > 0.8: Almost perfect agreement. 

Cohen’s Kappa = 0.6–0.8: Strong agreement. 

Cohen’s Kappa < 0.4: Weak agreement.  

 

Mean Absolute Error (MAE) measures the average absolute error between predicted values 

and actual values, is computed as follows: 

 

                                                 MAE =  
1

2
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1     (21) 

 

Where: 

𝑦𝑖 is the actual value.  

𝑦̂𝑖 is the predicted value.   

n is the number of samples. 

 

A lower MAE indicates a more accurate model. 

 

Mean Squared Error (MSE) measures the average squared error between actual and 

predicted values, penalizing larger errors more than MAE, is computed as follows: 

 

                                                 MSE =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1     (22) 

 

A lower MSE indicates a better model. Since MSE squares the errors, it is more sensitive to 

large deviations. The squared unit of MSE makes interpretation less intuitive compared to 

MAE. 
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Root Mean Squared Error (RMSE) is the square root of MSE, bringing the unit back to the 

original scale of the target variable. RMSE is more sensitive to large errors than MAE, is 

computed as follows: 

 

                                      RMSE = √MSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1     (23) 

 

Relative Absolute Error (RAE) compares the total absolute error of a model to the total 

absolute error of a simple baseline model (predicting the mean of actual values), is computed 

as follows: 

 

                                                    RAE =
∑|𝑦𝑖−𝑦̂𝑖|

∑|𝑦𝑖−𝑦̅|
                               (24) 

 

Where 𝑦̅ is the mean of actual values. 

If RAE < 1: The model performs better than a simple mean predictor.  

If RAE > 1: The model performs worse than predicting the mean. 

 

Root Relative Squared Error (RRSE) is a normalized version of RMSE, comparing the 

model’s performance to a baseline model that predicts the mean of actual values), is computed 

as follows: 

 

                                                 RRSE = √
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                                 (25) 

If RRSE < 1: The model is better than a simple mean predictor.  

If RRSE > 1: The model is worse than a simple mean predictor. 

 

3.6. Explaining the Model Using SHAP (Shapley Additive Explanations) 

 

SHAP is a method that can explain predictive models both at an overall level and on a per-

instance basis [37]. SHAP is based on game theory, where each feature in the model is 

considered a player contributing to the final outcome [38]. SHAP is widely recognized as a 

consistent approach for determining feature importance. Tree-SHAP, a variant of SHAP 

optimized for decision tree models, was utilized in this study. The Shapley value is computed 

using the following equations: 

 

                                                 f(y′) = ɸ0 +  ∑ ɸ𝑖𝑦𝑖
′𝑁

𝑖=1     (26) 

 

Where: 

f represents the explanation model. 

N is the maximum size of the feature set. 

ɸ0 represents the expected output of the model when no features are included. 

ɸ𝑖 ∈ 𝑅 denotes the feature attribution for feature i. 

y′ represents the simplified input feature representation used in SHAP calculations. 

𝑦𝑖
′ is an individual element of 𝑦′, indicating whether a specific feature i is included in the 

current subset. 
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To compute the contribution of each feature, the Shapley formula is applied: 

 

                  ɸ𝑖 = ∑
|𝑆|!(𝑝−|𝑆|−1)!

𝑝!𝑆⊆{1,…,𝑝}⟍{𝑖} [𝑔𝑥(𝑆⋃{𝑖}) − 𝑔𝑥(𝑆)]            (27) 

 

Where: 

 

                                      𝑔𝑥(S) = 𝐸[𝑔(𝑥)|𝑥𝑆]             (28) 

 

Where: 

S represents a subset of input features.  

x is the vector of feature values for a specific instance that needs to be explained.  

p is the total number of features in the model.  

𝑔𝑥(S) is the value function, which expresses the expected model output when only using the 

subset S. 

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1. Results from Selecting Features 

 

Selecting the most important features helps reduce model complexity while maintaining 

high performance, optimizing the prediction accuracy of traffic accident severity. Since feature 

selection is crucial for model performance, it is essential to analyze the importance of input 

variables before building a predictive model [24]. Identifying relevant features allows the 

model to focus on the most influential factors while discarding redundant or less significant 

attributes. This study examines the relationships between selected features and accident 

severity to enhance prediction accuracy and model efficiency. 

In this study, the Random Forest algorithm was employed to identify the most influential 

features related to accident severity. This approach ensures that only the most relevant 

attributes are retained for model training. 

 

Tab. 3 

Feature importance and cumulative contribution 

 

No Feature Importance (I) Cumulative (𝑪𝒌) Result 

1 first_road_number 0.3010 0.3010 

Important 

features 

selected for 

predicted 

model 

2 day_of_week 0.1528 0.4538 

3 junction_detail 0.0669 0.5208 

4 speed_limit 0.0630 0.5838 

5 light_conditions 0.0495 0.6333 

6 number_of_vehicles 0.0480 0.6813 

7 weather_conditions 0.0436 0.7249 

8 first_road_class 0.0420 0.7669 

9 number_of_casualties 0.0408 0.8077 

10 road_surface_conditions 0.0397 0.8474 

11 
did_police_officer_attend 

_scene_of_accident 
0.0372 0.8846 
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12 road_type 0.0358 0.9204 

13 junction_control 0.0306 0.9510 
Less 

important 

features 

14 trunk_road_flag 0.0175 0.9685 

15 urban_or_rural_area 0.0166 0.9851 

16 special_conditions_at_site 0.0149 1.0000 

 

 
Fig. 5. The importance of accident features 

 

Figure 5 illustrates the importance of accident features, highlighting the key predictors of 

accident severity. Moreover, Tab. 3 presents the feature importance scores derived from the 

Random Forest model. The first road number was identified as the most significant predictor, 

followed by the day of the week and junction details. These features exhibited high importance 

values, indicating their substantial impact on accident severity. According to Tab. 3, the first 

12 features have a cumulative importance of 92.04%, exceeding the 90% threshold, and are 

therefore chosen as the most critical features in the model. The remaining features 

(junction_control, trunk_road_flag, urban_or_rural_area, special_conditions_at_site) 

contribute less than 10% to the cumulative importance and are considered to have a lower 

impact on the prediction model. 

 

4.2. Results from the comparison between the predictive models 

 

In this study, a total of 106,004 traffic accident instances from the UK in 2022 were analyzed 

to extract critical insights into accident severity. The dataset was divided into 80% for training 

and 20% for testing, with three accident severity levels: slight, serious, and fatal. Several 

machine learning algorithms, including Decision Tree, LightGBM, and SVM, were tested to 

determine the most effective model for predicting accident severity. 
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The statistical results are summarized in Tab. 4, showing that LightGBM demonstrated the 

highest accuracy of 76.50% compared to Decision Tree (66.30%) and SVM (76.30%). This 

shows that the LightGBM model can classify accident severity levels more accurately than the 

other two models. Although SVM achieved similar accuracy to LightGBM, its precision was 

lower at 65.70%, while LightGBM reached 70.10%. This means that when the LightGBM 

model predicts a case as belonging to a certain severity level (e.g., "serious accident"), the 

probability of that prediction being correct is higher. High precision is especially important in 

applications requiring immediate action. For example, if the model is used to alert about serious 

accidents, a higher precision helps reduce the number of false alarms (false positives). Besides, 

LightGBM has the highest Recall and F1-score, demonstrating that this model has the most 

accurate classification ability and the best balance among the criteria compared to the other 

models. 

Moreover, the MAE value reflects the average deviation between the predicted and actual 

values. The lower the MAE value, the more accurate the model. The results show that 

LightGBM achieves the lowest MAE (0.250), outperforming Decision Tree (0.358) and SVM 

(0.253). The MSE and RMSE values heavily penalize large errors, helping to assess the 

stability of the model. LightGBM continues to show superiority with MSE = 0.281 and RMSE 

= 0.530, while Decision Tree has the highest errors (MSE = 0.403, RMSE = 0.632). The MSE 

value of LightGBM was the lowest among the three models, further validating its superior 

predictive capability. RAE and RRSE compare the model’s performance to the baseline 

(usually predicting the mean value). A value of RAE < 1 or RRSE < 1 indicates that the model 

performs better than the baseline. LightGBM achieves RAE = 0.650 (35% better than baseline), 

but RRSE = 1.128 shows that the model is still 12.8% worse than the baseline when measured 

by RMSE. Notably, Decision Tree (RAE = 0.929, RRSE = 1.346) barely exceeds the baseline, 

reflecting its limitations in capturing data patterns. The overall results confirm that LightGBM 

is the optimal model, balancing accuracy (low MAE, MSE) and the ability to reduce large 

errors (low RMSE). To evaluate the accuracy of the model, indicators such as MAE, MSE, etc., 

are crucial. However, the study [39] does not use these indicators to assess the model's 

accuracy. Study [39] shows that the Decision Tree model is more effective than the LightGBM 

model. 

 

Tab. 4 

Assessing various algorithms based on metrics 

 

 Algorithms 

 

         Metrics 

LightGBM 

 

Decision Tree 

 

SVM 

 

Accuracy 0.765 0.663 0.763 

Precision 0.701 0.648 0.657 

Recall 0.765 0.663 0.763 

F1-score 0.670 0.655 0.662 

Cohen’s Kappa 0.022 0.044 0.000 

MAE 0.250 0.358 0.253 

MSE 0.281 0.403 0.285 

RMSE 0.530 0.632 0.534 

RAE 0.650 0.929 0.655 

RRSE 1.128 1.346 1.136 
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4.3. Analysis of LightGBM Model Results 

 

Table 5 illustrates the performance metrics of the LightGBM model in predicting three 

accident severity levels (Fatal, Serious, Slight). The model achieves an overall accuracy of 

76.40%, indicating a reasonable general classification capability. Moreover, a confusion 

matrix, structured with three rows and three columns, was generated to outline the 

classification results for three distinct classes, including Fatal, Serious, and Slight accidents, 

depicted in Tab. 6. The main diagonal, displaying values (2, 82, 16110) denotes correct 

predictions, while the remaining entries in the table signify incorrect predictions. Tab. 6 shows 

that the LightGBM model predicts more correctly the slight class than the other two classes, 

with the number of correctly predicted cases up to 16,110. Furthermore, in terms of recall for 

the slight class, it indicates that 99.00% of slight injuries were accurately identified as positive. 

 

Tab. 5 

Evaluation metrics of the predicted values for  

the three classes of the LightGBM model 

 

Accuracy 0.764 

Value Precision Recall F1-score 

Fatal 0.14 0.01 0.01 

Serious 0.45 0.02 0.03 

Slight 0.77 0.99 0.87 

 

Tab. 6 

Confusion matrix of the LightGBM model 

 

  Predicted Condition 

  Fatal Serious Slight 

Actual 

Condition 

Fatal 2 19 322 

Serious 6 82 4573 

Slight 6 81 16110 

 

4.4. Explaining the LightGBM Model Using SHAP 

 

❖ SHAP chart analysis and interpretation 

The SHAP chart provides insights into the influence of each feature on the model’s 

predictions, as shown in Fig. 6.  

+ The vertical axis ranks features in descending order of impact;  

+ The horizontal axis represents SHAP values, indicating how each feature affects the 

predicted accident severity; 

+ The color gradient further enhances interpretation, with red indicating higher feature 

values and blue representing lower values, corresponding to the encoding scheme used 

in the dataset. 

In this study, accident severity is encoded on a decreasing scale: 1 = Fatal, 2 = Serious, 3 = 

Slight. This means that higher predicted values (closer to 3) indicate a lower accident severity, 

whereas lower predicted values (closer to 1) suggest more severe accidents. Consequently, a 

positive SHAP value pushes predictions towards lower severity (Slight accidents), while a 

negative SHAP value drives predictions towards higher severity (Fatal or Serious accidents). 
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Fig. 6. The LightGBM model explanation using SHAP 

 

❖ Key findings 

The SHAP analysis reveals that the "did_police_officer_attend_scene_of_accident" feature 

has the strongest influence on accident severity predictions, followed by "number_of_vehicles" 

and "speed_limit". These findings highlight key factors that impact the severity of road 

accidents, as analyzed in the following feature-by-feature breakdown. The application of SHAP 

analysis techniques to gain a deeper understanding of the relationship between input variables 

and the predictive model is crucial. However, the study [39] only focuses on a comparative 

analysis of machine learning techniques but does not evaluate the relationship between input 

variables and the predictive model.  

The presence of a police officer at the scene significantly affects accident severity. When a 

police officer is present (coded as 2 = Yes, represented in red), the SHAP values are generally 

positive, meaning that the model predicts a less severe accident (Slight). Conversely, when a 

police officer is absent (coded as 1 = No, shown in blue), the SHAP values become negative, 

pushing predictions toward higher severity (Fatal or Serious). This finding suggests that police 

presence might contribute to improved accident response, reducing the likelihood of fatal or 

serious outcomes.     

The number of vehicles involved in an accident also plays a crucial role. When more 

vehicles are present (higher values, red), the SHAP values are positive, indicating a tendency 

toward less severe accidents. On the other hand, when fewer vehicles are involved (lower 

values, blue), the SHAP values turn negative, suggesting an increased likelihood of Fatal or 

Serious accidents. This pattern aligns with real-world observations, where single-vehicle 

accidents, particularly those involving high speeds or poor road conditions, tend to result in 

greater severity. 

The speed limit at the accident location strongly influences accident severity. Lower speed 

limits (blue) are associated with positive SHAP values, meaning accidents are more likely to 

be classified as Slight. Conversely, higher speed limits (red) correlate with negative SHAP 

values, pushing predictions towards Fatal or Serious accidents. This finding supports the well-

documented relationship between speed and accident severity: higher speeds increase the force 
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of impact, leading to more severe outcomes. Study [39] mentions that the speed limit 

characteristic affects the severity of accidents; however, it does not specify how it influences 

them. 

Several additional features influence accident severity but with a lower impact compared to 

the top-ranked factors. These include light conditions, day of the week, weather conditions, 

road surface conditions, and first road class. While they contribute to the model’s predictions, 

their effects are less pronounced, suggesting that external environmental factors, although 

important, may not be the primary determinants of accident severity compared to police 

presence, vehicle count, and speed limit. 

 

 

5. CONCLUSIONS  

 

This study investigated the application of supervised machine learning models to predict 

road accident severity in the UK context, utilizing a 2022 dataset comprising 106,004 accident 

records. Three algorithms – Decision Tree, SVM, and LightGBM – were evaluated, with 

LightGBM emerging as the most effective model, achieving 76.5% accuracy and 

demonstrating superior precision (70.1%), recall (76.5%), and error metrics (MAE = 0.250, 

MSE = 0.281).   

To enhance model interpretability, SHAP analysis was employed to identify key factors 

influencing crash severity. The results highlighted police officer attendance, speed limits, and 

the number of vehicles involved as significant determinants. Notably, police presence at the 

scene was associated with reduced severity, while higher speed limits and single-vehicle 

collisions correlated with an increased likelihood of fatal or serious outcomes. 

By integrating machine learning with post-hoc interpretability techniques, this study 

provides actionable insights for policymakers to enhance road safety. The findings emphasize 

the importance of optimizing enforcement strategies and revising speed regulations. 

Ultimately, this research highlights the potential of interpretable machine learning frameworks 

to improve the understanding of crash dynamics and support targeted interventions, 

contributing to global efforts to reduce traffic-related fatalities and injuries.  

Despite its contributions, this study has several limitations. First, the dataset was restricted 

to UK accidents in 2022, limiting its generalizability to other regions or time periods. Second, 

key variables such as driver behavior and vehicle-specific details were absent, potentially 

omitting critical predictors of severity. Therefore, future research should incorporate multi-

year, multi-region datasets to capture temporal and geographical variability. 
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