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KINEMATIC ANALYSIS OF TRAPEZOIDAL SUSPENSION 

 

Summary. This article deals with the kinematic analysis of trapezoidal 

suspension. Specifically, it focuses on the behaviour of the chassis when obstacle 

crossing was monitored. Our team is developing an autonomous mountain vehicle 

that will be equipped with different working adapters such as a cutter bar and a 

picker. The device was designed for work on slopes, hence, must be able to 

overcome certain natural obstacles. This implies the need to analyse the wheel 

suspension kinematics. The vehicle was built on a trapezoidal suspension, which 

has proven to be the most suitable option with respect to operating conditions. 

From the results obtained, it was possible to analyse the driving characteristics of 

the obstacle, track the rollover limits and overall safety of operation. 
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1. INTRODUCTION 

 

The comfort of driving a car depends on the road surface, road condition and the 

construction of the car itself [14,18,19,21]. The last of these factors can reduce the adverse 

effects of the other two. There are many types of constructions. The axles are the vehicle 

structural elements, which connects the vehicle frame and the wheel [1,3]. The axle consists 

of the wheels, wheel suspension system, wheel bearing system and optional systems: 

suspension, steering, drive and wheel braking [5,8,15,16]. 

Division of the axles: 

1. Solid axles  

2. Swinging (independent hanging) axles 

 

 
Fig. 1. a) solid axle, b) independent hanging axle [1] 

 

The dependent suspensions consist of a rigid element - a beam at the end of which the 

wheels are attached. Hence, the movement of the wheels is dependent as the movement of one 

wheel is transmitted through the beam to the other. Thus, they are mainly used on the rear 

axles of trucks and on the axles of vehicles designed to work in tough terrains and difficult 

conditions [2,4,6,20]. The vertical movement of the wheel with independent suspension does 

not affect the direct movement of the opposite wheel. The advantages of independent 

suspension are vibration resistance and simpler influence of vehicle properties by changing 

geometry, smaller space requirements and lower weight of unspring parts [10]. 

Kinematic analysis was used to calculate the positions, velocities and acceleration points of 

the mechanism, regardless of the load. The design and calculation works were done with the 

use of the Creo Parametric CAD system and the ADAMS system. 

 

 

 

2. BASIC REQUIREMENTS 

 

The proposed axle is based on the following requirements: 

• forwards / backwards  

• turning wheels 

• turn around the centre of the mower 

• walk in  

 

The following requirements were observed as well: 

• work on slopes with a slope of up to 45° 

• overcome terrain inequalities and obstacles 

• correct positioning of the mowing device 

• maintaining agrotechnical requirements 
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• dampening dynamic effects from wheel drive 

• use of suitable tires for a given use 

• use of passive suspension 

• points of attachment of the arms on the chassis 

 

Based on these requirements, the trapezoid axle type (two-armed) was selected. The 

advantages of this type of suspension are mainly the variability in the choice of geometric 

parameters, the possibility of attaching the shock absorbers and the load distribution on the 

two arms. The rotating unit was above the wheel, allowing the wheel to rotate by 90°. The 

advantage of the position of the servomotor [9,10] above the wheel was to reduce the load on 

rotation. This "relieving" of the servomotor was ensured by moving the axis of the servomotor 

through the centre of gravity of the wheel. We tried to distribute axle weight to the centre of 

gravity of the wheel, which helped to use full tires. Other components and construction were 

significantly easier, making the axle centre position in the direction of the horizontal axis y 

approaching the centre of gravity of the wheel. In the direction of the axis z, from the position 

of the centre of gravity, the servomotor with the gearbox was affected. A schematic sketch of 

the axle can be seen in Fig. 2 [11,12,17]. 

 

2.1. Elements of the mechanism 

 

The main axle parts (Fig. 2) are the chassis attachment (1), upper suspension arm (2), 

lower suspension arm (3), suspension body (4), wheel attachment (5), air damper (6) and a 

servomotor (8). 

 

 
Fig. 2. Schematic sketch of the axle [17] 

 

To suspend the axles, the air suspension was selected as it is more suitable for the needed 

application because it has adjustable stiffness. We were able to adjust the stiffness of the 

dampers by the means of the pressure in the rolls. These shock absorbers have the possibility 

of complete shutdown and a choice of jump in the event of an obstacle. Communications 

between the shoulders and the brick, as well as the shoulders and the frame, are pivotable. 

Therefore, each joint had one degree of freedom, which was ensured by the roller bearings 

[7,8]. 

The choice of the geometric dimensions of the trapezoidal suspension was based on the 

concept of the mower, the size of the reaction forces at the pivots of the suspension pins and 

the kinematic analysis of the suspension mechanism. 
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Fig. 3. Geometrical 3D model of the axle [17] 

 

 

3. KINEMATIC ANALYSIS OF THE TASK 
 

Before performing the analysis, it was necessary to define the mechanism itself, create a 

kinematic scheme, determine the number of degrees of freedom of the mechanism, the 

correctness of the mechanism, as well as the number and type of links in order to create a 

mathematical model. The input parameters of the model were the geometric coordinates of the 

significant points and the suspension parameters, which formed a set of all permissible 

solutions. The created kinematic model of the mechanism has one degree of freedom. The 

remaining degree of freedom was taken by defining the displacement of the DB (wheel / 

terrain) contact point in the z-axis direction (Fig. 4) [17]. 

 

 
 

Fig. 4. Kinematic scheme with reference points [17] 
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This kind of mechanism has been analysed by different authors in various publications 

[3,4,13]. However, it is obvious that the mechanism of this suspension is four-element, closed 

and single-loop. The Gruber's rule determines that real mobility is the same as the theoretical 

one, consequently, the system is correct. 

 

3.1. Mathematical model 
 

Mathematically, the motion of a mechanism is described by nonlinear algebraic equations 

(NAE). Fig. 5 demonstrates that it is a closed-loop mechanism. We determined the number of 

vector loops from the formula [5] 

 

 1 1k s u    . (1) 

 

 
 

Fig. 5. Single loop mechanism 

 

 

The vector loop is then written as the equation 

 1 2 3 4 0h h h h    . (2) 

 

The input values were based on the dimension requirements of a customer. The formulas 

derived for the mechanism kinematic loop are defined as 

 y axis: 1 2 12 24sin sin sin sin 0a h c b       , (3) 

 z axis: 1 2 12 24cos cos cos cos 0a h c b       . (4) 

 

3.2. Solution in ADAMS  
 

The model used for ADAMS simulations has been adapted to suit the optimised number of 

moving parts, hence, the inertia of the mechanism itself. The simplified model of a mountain 

mower was developed in the Adams MSC software (Fig. 6). The input parameters of the 

model were the geometric coordinates of the significant points and the hanging axle 

parameters that created the set of all acceptable solutions. 
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Fig. 6. Model in Adams view environment 

 

 

As mentioned above, the remaining degree of freedom was removed by defining the 

displacement of the wheel contact point and the ground in the z-direction. Simulations that 

represented the crossing of the mower over the obstacle were performed. The simulation 

consisted of a displacement of 100 mm in the z-direction, that is, 50 mm in the positive 

direction and 50 mm in the negative axis direction (Fig. 7). 

 

 
 

Fig. 7. Graph of actuating process (right side) 

 

 

4. RESULTS 
 

The actual implementation of input variables was evaluated by monitored parameters / 

outputs from the simulation. The outputs were specific characteristics or features of the model 

that delimited a set of permissible solutions. Many outputs were monitored for simulations. 

We have selected the following outputs for this article. 

The following selected graphs reflect the behaviour of a specific point on the frame, 

depending on the change of path, speed and acceleration when crossing the obstacle. 
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Fig. 8. Graph of track dependence on time 

 

The red colour curve in Fig. 8 shows dynamic excitation (by displacement). The total 

displacement was 100 mm in the z-axis direction, 50 mm in a positive and 50 mm in a 

negative direction.  

The purple colour illustrates the response of the vehicle gauge in the direction of z-axis. 

 

 
 

Fig. 9. Time - velocity dependence 

 

 
 

Fig. 10. Time - acceleration dependence 

 

Figure 11 shows the maximum compression or stretching of the spring. During the passage 

of the wheel through the obstacle, the force effects on the springs were monitored. 
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Fig. 11. Spring force during simulation 

 

 

5. SUMMARY 
 

The kinematic analysis in MSC Adams demonstrates the possibilities of applying different 

types of suspension. Extreme conditions for safe operation when crossing obstacles were 

identified. Solution results were verified on a second mower prototype (MM2). All tests were 

successful. Furthermore, other tests are ongoing at the time of preparation of this article. 

The first part of this article provides information on axle types and the choice of the 

appropriate axle type. The selected axle appears to be the most appropriate for (MM2) as 

confirmed by tests. The initial conditions that influenced the formation of the suspension were 

defined. In the next section, the principle of creating a mathematical model was presented. 

Thereafter, an overview of some test results. 
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